اطلاعات رصدی
مبدا J2000 اعتدال J2000
صورت فلکی خرس بزرگ بعد ۱۲h ۵۴m ۰۱.۶s میل +۵۵° ۵۷′ ۳۵.۴″ قدر ظاهری (V) ۱.۷۶ مشخصات
رده A0pCr راهنمای رنگ U-B 0.02 راهنمای رنگ B-V -0.02 اخترسنجی
سرعت شعاعی (Rv) -۹.۳ km/s حرکت مخصوص (μ) RA: ۱۱۱.۷۴ mas/yr
Dec.: -۸.۹۹ mas/yr اختلاف منظر (π) ۴۰.۳ mas قدر مطلق (MV) -۰.۲۲
جزئیات
جرم ~۳ M☉ شعاع ۳.۷ R☉ درخشندگی ۱۰۸ L☉ دما ۹,۴۰۰ K سن ? سال
نامگذاریهای دیگر
Alioth, Allioth, Aliath, 77 Ursae Majoris, HR 4905, BD +56°1627, HD 112185, GCTP 2964.00, SAO 28553, FK5 483, CCDM 12540+5558, HIP 62956. جَون یا اِلیَت یا اپسیلون خرس بزرگ یک ستاره است که در صورت فلکی خرس بزرگ قرار دارد. این ستاره را در انگلیسی، به تقلید از الیَت، Alioth مینامند.
ستارههای بنات النعش نام بایرنامترجمه نامنام انگلیسی
آلفا خرس بزرگ (α UMa) دُبّه (یا دبهٔ کُبری) خرس ماده Dubhe (یا Dubh, Dubb)
ظَهرِ دب اکبر پشتِ خرس بزرگ Thahr al Dub al Akbar
بتا خرس بزرگ (β UMa) مراق
Merak (یا Mirak)
گاما خرس بزرگ (γ UMa) فَخْذ (یا فِخْذ یا فِخِذ) ران [خرس] Phecda (یا Phacd, Phegda)
دلتا خرس بزرگ (δ UMa) مَغرِز (یا مَغرَز) بیخ و جای رستنِ [دم خرس] Megrez
اپسیلون خرس بزرگ (ε UMa) اَلْیَت (یا الیَة) دم یا گوشت و پیهای که بر سرینِ [خرس] است Alioth
جَون تیره رنگ؛ که یک کوتوله قهوهای است
زتا خرس بزرگ (ζ UMa) عَناق بزغاله ماده
مئزر (یا میزار) چادر Mizar (یا Mitsar)
اتا خرس بزرگ (η UMa) قائِد جلودار، رهبر Alkaid (یا Elkeid) (القائد)
قائد بنات النعش پیشرو دختران تابوت
بنات النعش دختران تابوت Benetnasch
۸۰ خرس بزرگ (80 UMA) سُها (یا سُهیٰ) ظاهرا از سهو و فراموشی است (به خاطر کوچکی) Alcor یا Suha انجمن رمان نویسی
اطلاعات رصدی
مبدا مبدأ (ستارهشناسی) اعتدال مبدأ (ستارهشناسی)
صورت فلکی آتشدان بعد ۱۷h ۳۱m ۵۰.۴۹۳۳s میل ۳۴.۱۲۱″ ۵۲′ −۴۹° قدر ظاهری (V) ۲.۷۶ تا ۲.۹ مشخصات
رده B3V راهنمای رنگ U-B −0.69 راهنمای رنگ B-V −0.17 راهنمای رنگ R-I −0.24 اخترسنجی
سرعت شعاعی (Rv) ۰ km/s حرکت مخصوص (μ) RA: −۳۱.۲۷ mas/yr
Dec.: −۶۷.۱۵ mas/yr اختلاف منظر (π) ۱۳.۴۶ mas قدر مطلق (MV) −۱.۵
درخشندگی (بولومتریک) ۵,۸۰۰ L☉ نامگذاریهای دیگر
Choo, CD−49°11511, FK5 651, HD 158427, HIP 85792, HR 6510, NSV 8999, SAO 228069. منابع
سیمباد اطلاعات چو یا آلفا آتشدان یک ستاره است که در صورت فلکی آتشدان قرار دارد. انجمن رمان نویسی
نامگذاریهای دیگر
Agena, Hadar, Khadar, HR 5267, HD 122451, CD−59°5365, LHS 51, SAO 252582, HIP 68702, GC 18971, CCDM J14038-6022 منابع
سیمباد اطلاعات بتا قنطورس یا حَضار یازدهمین ستاره درخشان در آسمان شب است که در صورت فلکی قنطورس قرار دارد. این ستاره دارای قدر ظاهری ۰٫۶۱ است و در حدود ۳۰۰ سال نوری از زمین فاصله دارد.
در سال ۱۹۳۵ میلادی، ستارهشناس هلندی جوان وت کشف کرد که حضار ستارهای مزدوج است که به دلیل ن*زد*یک*ی آنها به یکدیگر، از زمین یک ستاره تشخیص داده میشوند. انجمن رمان نویسی
خباء خباء
اطلاعات رصدی
مبدا J2000 اعتدال J2000
صورت فلکی کلاغ بعد ۱۲h ۰۸m ۲۴.۸s میل -۲۴° ۴۳′ ۴۴″ قدر ظاهری (V) ۴.۰۰ مشخصات
رده F0 IV-V راهنمای رنگ U-B -0.02 راهنمای رنگ B-V 0.33 اخترسنجی
سرعت شعاعی (Rv) +۴.۴ km/s حرکت مخصوص (μ) RA: ۱۰۰.۱۸ mas/yr
Dec.: -۳۹.۳۳ mas/yr اختلاف منظر (π) ۶۷.۷۱ mas قدر مطلق (MV) ۳.۱۷
جزئیات
جرم ۱.۲ M☉ دما ۷,۰۰۰ K
نامگذاریهای دیگر
Alchiba, Al Minliar al Ghurab, Al Chiba, 1 Crv, GJ 455.3, HR 4623, CD -24° 10174, HD 105452, GCTP 2796.00, SAO 180505, IRAS 12058-2426, HIP 59199. خِباء (چادر) یا مِنقارالغُراب (نوک کلاغ) یا آلفا کلاغ یک ستاره است که در صورت فلکی کلاغ قرار دارد. انجمن رمان نویسی
اطلاعات رصدی
مبدا مبدأ (ستارهشناسی) اعتدال مبدأ (ستارهشناسی)
صورت فلکی شیر بعد ۱۱h ۱۴m ۱۴.۴۱s میل +۱۵° ۲۵' ۴۶.۴۵" قدر ظاهری (V) +۳.۳۲۴ مشخصات
رده A2V اخترسنجی
حرکت مخصوص (μ) RA: -۵۹.۰۱ mas/yr
Dec.: -۷۹.۳۷ mas/yr اختلاف منظر (π) ۱۸.۳۶ mas فاصله ۵۴.۵ pc
جزئیات
گرانش سطحی (لگاریتم g) ۳.۵۵ دما ۹۲۵۰ K
نامگذاریهای دیگر
70 Leo, HR 4359, BD+16 2234, HD 97633, SAO 99512, FK5 423, HIP 54879. خَراتان (دندههای کوچک) یا زُبرةالاسد (کتف شیر) یا تتا شیر یک ستاره است که در صورت فلکی شیر قرار دارد. انجمن رمان نویسی
دادههای دیداری
میانگین فاصله
از زمین ۱٫۴۹۶×۱۰۱۱ m
۸٫۳۱ دقیقه با سرعت نور
درخشش دیداری (V) −۲۶٫۷۴م [۱]
قدر مطلق ۴٫۸۳م [۱]
ردهبندی ستارگان G2V
متالیسیته Z = ۰٫۰۱۷۷[۲]
قطر زاویهای ۳۱٫۶′ - ۳۲٫۷′ [۳]
صفتها خورشیدی ویژگیهای مداری
میانگین فاصله
از هستهٔ راه شیری ~۲٫۵×۱۰۲۰ م
۲۶ ۰۰۰ سال نوری
دورهٔ کهکشانی (۲٫۲۵–۲٫۵۰)×۱۰۸ a
سرعت ~۲٫۲۰×۱۰۵ m/s
(گردش بهدور مرکز کهکشان)
~۲×۱۰۴ m/s
(نسبت به سرعت میانگین ستارههای دیگر در همسایگی ستارهای) ویژگیهای فیزیکی
میانگین قطر ۱٫۳۹۲×۱۰۹ m [۱]
۱۰۹ زمین
شعاع استوایی ۶٫۹۵۵×۱۰۸ م [۴]
۱۰۹ × زمین[۴]
محیط استوایی ۴٫۳۷۹×۱۰۹ m [۴]
۱۰۹ × زمین[۴]
تختشدگی ۹×۱۰−۶
مساحت ۶٫۰۸۷۷×۱۰۱۸ m² [۴]
۱۱ ۹۹۰ × زمین[۴]
حجم ۱٫۴۱۲۲×۱۰۲۷ m³ [۴]
۱ ۳۰۰ ۰۰۰ زمین
جِرم ۱٫۹۸۹۱ ×۱۰۳۰ کگ[۱]
۳۳۲ ۹۴۶ زمین
چگالی میانگین ۱٫۴۰۸ ×۱۰۳ کگ/م³[۴][۱][۵]
چگالیهای گوناگون هسته: ۱٫۵×۱۰۵ کگ/م³
فتوسفیر پایینی: ۲×۱۰-۴ کگ/م³
کروموسفیر پایینی: ۵×۱۰-۶ کگ/م³
هالهٔ میانگین: ۱۰×۱۰-۱۲کگ/م³[۶]
گرانش سطحی استوایی ۲۷۴٫۰ m/s۲ [۱]
۲۷٫۹۴ g
۲۸ × گرانش سطحی زمین[۴]
سرعت گریز
(از سطح) ۶۱۷٫۷ km/s [۴]
۵۵ × زمین[۴]
دما
برای سطح (مؤثر) ۵ ۷۷۸ K [۱]
دما
برای تاج خورشیدی ~۵×۱۰۶ K
دما
برای هسته ~۱۵٫۷×۱۰۶ K [۱]
درخشش (Lsol) ۳٫۸۴۶×۱۰۲۶ W [۱]
~۳٫۷۵×۱۰۲۸ lm
~۹۸ lm/W اثر
شدت میانگین (Isol) ۲٫۰۰۹×۱۰۷ W m-۲ sr-۱ ویژگیهای گردش
انحراف محوری ۷٫۲۵° [۱]
(به دایرةالبروج)
۶۷٫۲۳°
(به صفحهٔ کهکشانی)
بُعد
برای قطب شمال[۷] ۲۸۶٫۱۳°
۱۹ ساعت ۴ دقیقه ۳۰ ث
میل
برای قطب شمال +۶۳٫۸۷°
۶۳°۵۲' شمالی
دورهٔ دوران ستارهای
(در عرض جغرافیایی ۱۶°) ۲۵٫۳۸ روز [۱]
۲۵ ر ۹ س ۷ دقیقه ۱۳ ث[۷]
(در استوا) ۲۵٫۰۵ روز [۱]
(در قطبها) ۳۴٫۳ روز [۱]
سرعت دوران
(در استوا) ۷٫۲۸۴ ×۱۰۳ km/h ترکیب فتوسفیری (برپایهٔ جِرم)
هیدروژن ۷۳٫۴۶ ٪[۸]
هلیوم ۲۴٫۸۵ ٪
اکسیژن ۰٫۷۷ ٪
کربن ۰٫۲۹ ٪
آهن ۰٫۱۶ ٪
گوگرد ۰٫۱۲ ٪
نئون ۰٫۱۲ ٪
نیتروژن ۰٫۰۹ ٪
سیلیکون ۰٫۰۷ ٪
منیزیوم ۰٫۰۵ ٪
این جعبه:
نمایش
بحث
ویرایش
خورشید (نامهای ادبی یا قدیمی: خور، هور، مهر، روز) یکی از ستارگان کهکشان راه شیری و تنها ستارهٔ سامانهٔ خورشیدی است که در مرکز آن جای دارد. خورشید یک کُرهٔ کامل است که از پلاسمای د*اغ ساخته شدهاست و در میانهٔ آن میدان مغناطیسی برقرار است.[۹][۱۰] این ستاره که قطری نزدیک به ۱٬۳۹۲٬۰۰۰ کیلومتر دارد سرچشمهٔ اصلی نور، انرژی، گرما و زندگی بر روی زمین است. قطر خورشید نزدیک به ۱۰۹ برابر قطر زمین و جرم آن ۳۳۰ هزار برابر جرم زمین برابر با ۲×۱۰۳۰ کیلوگرم است. این مقدار ۹۹٫۸۶٪ کل جرم سامانهٔ خورشیدی است.[۱۱]
انفجار نهایی یک ستارهٔ سنگین را ابرنواختر مینامند ولی خورشید هیچگاه چنین انفجاری را تجربه نخواهد کرد زیرا کمترین جرم مورد نیاز برای رخداد یک ابرنواختر، هشت برابر جرم خورشید است.[۱۲] از نظر شیمیایی سه-چهارم جرم خورشید را هیدروژن و باقیماندهٔ آن را بیشتر هلیم میسازد. پس از هیدروژن و هلیم، عنصرهای سنگین از سازندگان دیگر خورشید عبارتند از: اکسیژن، کربن، نئون و آهن و… این عنصرها، سازندهٔ ۱٫۶۹٪ از جرم خورشید اند که این مقدار خود ۵٬۶۲۸ برابر جرم زمین است.[۱۳]
خورشید در ردهبندی ستارگان بر پایهٔ ردهبندی طیفی، در دستهٔ G27 جای دارد و به صورت غیررسمی با نام کوتولهٔ زرد از آن یاد میشود چون پرتوهای پیدای آن در طیف زرد-سبز شدیدتر است. هر چند که رنگ آن از سطح زمین، سفید باید دیده شود ولی وجود پراکندگی نور آبی در جو سبب زرد دیده شدن آن است (پراکندگی رایلی).[۱۴][۱۵] همچنین در برچسب ردهبندی طیفی، G2، گفته شده که دمای سطح خورشید نزدیک به ۵۷۷۸ کلوین (۵۵۰۵ سانتیگراد) است و در V گفته شدهاست که خورشید مانند بیشتر ستارگان، یک ستارهٔ رشتهٔ اصلی است و در نتیجه انرژی خود را از راه همجوشی هستهای هسته ی هیدروژن به هلیم فراهم میکند و در هر ثانیه، در هستهٔ خود، ۶۲۰ میلیون تُن هیدروژن را دچار همجوشی میکند. در دورهای کیهان شناسان میگفتند که خورشید نسبت به دیگر ستارگان، ستارهای کوچک و ناچیز است ولی امروزه بر این باور اند که خورشید از ۸۵٪ ستارگان کهکشان راه شیری درخشان تر است. چون بیشتر آنها کوتولههای سرخاند.[۱۶][۱۷] بزرگی قدر مطلق خورشید ۴٫۸۳+ است البته چون خورشید نزدیکترین ستاره به زمین است، به همین دلیل، خورشید درخشانترین جرم در آسمان دانسته میشود و قدر ظاهری آن ۲۶٫۷۴- است.[۱۸][۱۹] تاج خورشیدی پیوسته در حال پراکندن بادهای خورشیدی در فضا است. این بادها، جریانهایی از ذرههای باردار اند که تا فاصلهای نزدیک به ۱۰۰ واحد نجومی توان دارند. حبابهای ساخته شده در محیط میانستارهای که در اثر بادهای خورشیدی ساخته شدهاند، بزرگترین سازهٔ پیوستهٔ پدید آمده در منظومهٔ خورشیدیاند.[۲۰][۲۱]
هماکنون خورشید در حال سفر از میان ابر میانستارهای محلی در ناحیهٔ حباب محلی در لبهٔ بازوی شکارچی از کهکشان راه شیری است. از میان ۵۰ ستارهای که تا شعاع ۱۷ سال نوری، در همسایگی زمین قرار دارند، (نزدیکترین آنها یک کوتولهٔ سرخ به نام پروکسیما قنطورس است که ۴٫۲ سال نوری فاصله دارد) از دیدگاه جرم، خورشید رتبهٔ چهارم را در میان آنها دارد.[۲۲] اگر از قطب شمالی کهکشان نگاه کنیم، خورشید به صورت ساعتگرد به گرداگرد مرکز کهکشانی راه شیری در گردش است و از آن نقطه نزدیک به ۲۴٬۰۰۰ تا ۲۶٬۰۰۰ سال نوری فاصله دارد، امید آن میرود که این گردش را ۲۲۵ تا ۲۵۰ میلیون سال دیگر به پایان برساند و دور خود را کامل کند. از آنجایی که کهکشان ما نسبت به تابش زمینهٔ کیهانی (CMB) در راستای صورت فلکی مار باریک با سرعت ۵۵۰ کیلومتر بر ثانیه در حرکت است، در نتیجه سرعت بدست آمده برای خورشید نسبت به CMB در راستای صورتهای فلکی پیاله یا شیر، ۳۷۰ کیلومتر بر ثانیه میشود.[۲۳]
فاصلهٔ متوسط خورشید از زمین نزدیک به ۱۴۹٫۶ میلیون کیلومتر است (یک واحد نجومی) است البته این فاصله در هنگامههای گوناگون حرکت زمین به گرد خورشید (در نقطههای اوج و حضیض) در ماههای ژانویه تا ژوئیه فرق میکند.[۲۴] در این فاصلهٔ میانگین، برای نور ۸ دقیقه و ۱۹ ثانیه زمان بـرده میشود تا از خورشید تا زمین سفر کند. میتوان گفت انرژی آمده از نور سفید خورشید، باعث ادامهٔ فرایند نورساخت، بوجود آمدن اقلیم و آب و هوای زمین و در نتیجه، فراهمکنندهٔ زندگی برای همهٔ جانداران روی زمین است.[۲۵] نقش ب*ر*جستهٔ خورشید بر وضعیت زمین از سالهای دور، از دوران پیشاتاریخ برای انسان شناخته شده بود به همین دلیل برای بسیاری از فرهنگها خورشید به عنوان یک خدا دانسته شده بود. همواره پیشرفت دانش از چیستی خورشید با کندی بسیار همراه بوده تا آنکه در سدهٔ ۱۹ میلادی آگاهی اندکی از مواد سازندهٔ خورشید و منبع انرژی آن بدست آمد. تلاش برای آگاهی بیشتر از خورشید همچنان ادامه دارد چون همچنان شماری از پدیدهها و رفتارهای بدون توضیح علمی در خورشید دیده میشود.
محتویات
۱ نام و ریشه
۲ ویژگیها
۲.۱ هسته
۲.۲ ناحیهٔ تابشی
۲.۳ ناحیهٔ همرفتی
۲.۴ شیدسپهر
۲.۵ جو خورشیدی
۲.۶ میدان مغناطیسی
۳ ساختار شیمیایی
۳.۱ گروه آهن
۴ چرخههای خورشید
۴.۱ لکههای خورشیدی و چرخهٔ آنها
۴.۲ چرخههای بلندمدت
۵ چرخهٔ زندگی
۶ جابهجایی قطبها
۶.۱ سرنوشت زمین
۷ نور خورشید
۸ جای خورشید در میانهٔ کهکشان
۹ سامانهٔ خورشیدی
۱۰ پرسشهای نظری
۱۰.۱ مسئلهٔ نوترینوی خورشیدی
۱۰.۲ مسئلهٔ گرمای تاج خورشیدی
۱۰.۳ مسئلهٔ کم نوری خورشید در جوانی
۱۱ تماشای خورشید و اثر آن
۱۲ صدای خورشید
۱۳ ویژگی فیزیکی
۱۴ منابع
۱۵ پیوند به بیرون
نام و ریشه
خورشید در فارسی درگذشته با نامهای دیگری چون خور، هور، مهر، روز خوانده میشد. خورشید در فارسی نوین از xvar-xšed از فارسی میانه که ایزدی است که در یشت ششم اوستا در مورد او نوشته آمده وی ایزدی است که جهان را از آلودگی دور میدارد. در اوستا hvarr-, xvan ,ta hvarә-xšaē آمدهاست. واژه خورشید درارای دو جزء است جزء نخست xvar-, hvar که با سنسکریت svar «خورشید» سنجنده میشود. جزء دوم برگرفته از اوستایی xšaita- «درخشان» است که در نام جمشید (پادشاه دوران طلایی در اسطورههای ایرانی و نیز نخستین شاه در برخی روایتها) آمده و برگرفته از صورت اوستایی yama-xšaita به معنی «جم درخشان» است.[۲۶]
در زبان انگلیسی واژهٔ Sun برای خورشید از واژهٔ sunne در انگلیسی باستان گرفته شدهاست (نزدیک به سال ۷۲۵ در بئوولف). گمان آن میرود که این واژه با واژهٔ south به معنی جنوب ارتباط داشته باشد. واژههای هم ریشه با Sun در زبانهای دیگر، مانند زبانهای ژرمنی و فریسی باستان به صورت sunne و sonne در ساکسونی باستان به صورت sunna، در هلندی میانه به صورت sonne، در هلندی امروزی به صورت zon در آلمانی Sonne، در نروژی باستان sunna و در زبان گوتیک sunnō است تمام عبارتهای آلمانی برای Sun از sunnōn در نیازبانهای ژرمنی آمدهاست.[۲۷][۲۸]
در هنگامهٔ پیش از مسیحیت اقوام ژرمن به خورشید شخصیت داده میشد و به عنوان خدا پرستش میشد نام آن در آن هنگامه Sól یا Sunna (به معنی خورشید در نروژی باستان) بود.[۲۸] پژوهشگران گمان میکنند که خورشید، ایزدبانوی ژرمنی ریشهای هندو-اروپایی در خورشیدخدایی کهن تر در زبانهای هندواروپایی دارد و میان واژهٔ Sól در نروژی باستان، سوریا در زبان سانسکریت، Sulis در زبان گالیش، Saulė در لیتوانیایی و Solnitse در زبانهای اسلاوی ارتباط است.[۲۸]
واژهٔ Sunday یا روز یکشنبه در انگلیسی امروزی، ریشه در انگلیسی باستان دارد (Sunnandæg به معنی «روز خورشید» پیش از سال ۷۰۰) و این به دلیل ترجمهٔ ژرمنی از عبارت لاتین dies solis است، خود این عبارت لاتین هم ترجمهٔ عبارت یونانی heméra helíou است.[۲۹]
در زبان لاتین واژهٔ Sol برای اشاره به ستاره بکار میرود این واژه به صورت اسم در انگلیسی کاربرد ندارد اما صفت آن solar بسیار پرکاربرد است.[۳۰][۳۱] واژهٔ Sol برای اشاره به زمان خورشیدی در دیگر سیارهها مانند بهرام کاربرد دارد.[۳۲] یک روز خورشیدی در زمین، میانگین ۲۴ ساعت است در حالی که روی بهرام ۲۴ ساعت و ۳۹ دقیقه و ۳۵٫۲۴۴ ثانیهاست.[۳۳]
این یک نگاره با رنگبندی فرابنفش از خورشید است. آنچه در این نگاره دیده میشود: زبانههای روشن پیرامون خورشید از ردهٔ C3 (ناحیهٔ سفید در بالا دست چپ)، آبتاز خورشیدی (سازههای موجی شکل در بالا دست راست) و چندین رگهٔ پلاسمایی که در ادامهٔ میدان مغناطیسی از سطح خورشید برخاستهاند.
پخش رسانه
این فیلم در اصل مجموعهای پویا از عکسهای گرفته شده از خورشید است که بر روی آنها کارهای نرمافزاری صورت گرفته تا ریزه کاری تصویر آشکار شود. این مجموعه نگارهٔ پویا مربوط به رفتار خورشید در یک بازهٔ ۲۴ ساعتهاست که در ۲۵ سپتامبر ۲۰۱۱ بدست آمدهاست.
خورشید ستارهای از گونهٔ کوتولهٔ زرد است که ۹۹٫۸۶٪ از مجموع جرم سامانهٔ خورشیدی را از آن خود کردهاست. هندسهٔ خورشید به یک کرهٔ کامل بسیار نزدیک است. پَخی بسیار کوچکی برابر با ۹×۱۰-۶ در هندسهٔ آن وجود دارد[۳۴] در نتیجه میان قطر خورشید در دو سوی قطبها نسبت به قطر آن در مدار استوایی ۱۰ کیلومتر اختلاف وجود دارد. از آنجایی که خورشید جامد نیست و از پلاسما ساخته شدهاست، در مدار استوایی نسبت به دو قطب، تُندتر میگردد. این رفتار که گردش اختلافی نام دارد، به دلیل وجود پدیدهٔ همرفت در خورشید و جابجایی ماده در اثر اختلاف دما است. آنچنان که از قطب شمال دائرةالبروج دیده میشود، این جرم به بخشی از جرم خورشید تکانهٔ زاویهای پادساعتگرد میدهد در نتیجه در سراسر خورشید یک سرعت زاویه را توزیع میکند. دورهٔ این گردش واقعی نزدیک به ۲۵٫۶ روز در مدار استوایی و ۳۳٫۵ روز در دو قطب است. از آنجایی که جایگاه زمین نسبت به خورشید همیشه در حال دگرگونی است و همیشه یک نقطه از زمین بهترین دید را نسبت به خورشید ندارد، گویا گردش این ستاره در مدار استوایی اش نزدیک به ۲۸ روز است.[۳۵] اثر جانب مرکز (گریز از مرکز) این گردش آرام، ۱۸ میلیون بار ضعیف تر از جاذبهٔ سطح خورشید در مدار استوایی آن است. اثر کشند سیارهها هم بسیار ضعیف است و نمیتواند تأثیر آشکاری بر شکل ظاهری خورشید بگذارد.[۳۶]
خورشید ستارهای با جمعیت (۱) است به عبارت دیگر ستارهای سرشار از عنصرهای سنگین است.[۳۷] گمان آن میرود که آغاز پدیداری خورشید به موجهای شوک تابیده شده از یک یا چند ابرنواختر آن همسایگی بازگردد.[۳۸] این تصور به دلیل انباشتگی عنصرهای سنگین مانند طلا و اورانیم در منظومهٔ خورشیدی نسبت به کمبود آنها در ستارههای با جمعیت نوع (۲) یا فقیر در عنصرهای سنگین، پدید آمدهاست. پذیرفتنی است اگر بگوییم این عنصرها در اثر انرژی بسیار بالای پدید آمده هنگام واکنشهای هستهای ابرنواختر یا هنگام جذب نوترون و تبدیل یک عنصر به عنصر دیگر درون یک ستارهٔ نسل دومی بزرگ بوجود آمدهاست.[۳۷]
خورشید مانند یک سیارهٔ خاکی دارای مرز روشنی نیست. تنها در لایههای بیرونی، چگالی گازها به صورت نمایی با افزایش فاصله از مرکز خورشید کاهش مییابد.[۳۹] شعاع خورشید برابر است با فاصلهٔ مرکز خورشید تا لبهٔ شیدسپهر. این لایه، بیرونیترین لایهای است که پس از آن گازها یا بسیار سرد اند یا لایهای بسیار نازک را میسازند که نمیتوانند به اندازهٔ درخور توجه نور تولید کنند. در نتیجه لایهٔ آخر لایهای است که چشم غیرمسلح بتواند به خوبی آن را ببیند.[۴۰]
هسته نوشتار اصلی: هستهٔ خورشیدی
از مرکز خورشید تا فاصلهای نزدیک به ۲۰ تا ۲۵ درصد شعاع خورشید به عنوان هستهٔ خورشید در نظر گرفته شدهاست.[۴۱] و چگالی آن ۱۵۰g/cm۳ نزدیک به ۱۵۰ برابر چگالی آب، برآورد شدهاست.[۴۲][۴۳] و دمای آن هم نزدیک به ۱۵٫۷ میلیون کلوین بدست آمدهاست. در مقابل دمای سطح خورشید نزدیک به ۵٬۸۰۰ کلوین است. تازهترین پژوهشها نشان دادهاست که گردش هستهٔ خورشید به دور خودش از دیگر جاهای شعاعی آن تندتر است.[۴۱] در بیشتر عمر خورشید، همجوشی هستهای از راه زنجیره گامهای p-p (پروتون-پروتون) و در نتیجه دگرگونی هیدروژن به هلیوم فراهمکنندهٔ انرژی خورشید بودهاست.[۴۴] تنها ۰٫۸٪ از انرژی پدید آمده در خورشید وارد چرخهٔ سیاناو میشود.[۴۵]
همسنجی سیارههای منظومه خورشیدی با تعدادی از ستارههای مشهور: الف:
زمین (۴) > ناهید (۳) > مریخ (۲) > تیر (۱) ب:
مشتری (۸) > زحل (۷) > اورانوس(۶) > نپتون (۵) > زمین (بدون شماره) پ:
شباهنگ (۱۱) > خورشید (۱۰) > ولف ۳۵۹ (۹) > مشتری (بدون شماره) ت:
دبران (۱۴) > نگهبان شمال (۱۳) > رأس پیکر پسین (۱۲) > شباهنگ (بدون شماره) ث:
ابطالجوزا (۱۷) >قلب عقرب (۱۶) > پای شکارچی (۱۵) > دبران (بدون شماره) ج:
ویوای سگ بزرگ (۲۰) >ویوی قیفاووس (۱۹) > مو قیفاووس (۱۸) > ابطالجوزا (بدون شماره)
هسته تنها ناحیه در خورشید است که بخش بزرگی از انرژی گرمایی آن را از راه همجوشی هستهای فراهم میکند. به این ترتیب در ناحیهای درونی از مرکز تا ۲۴٪ شعاع، کارمایهٔ ۹۹٪ خورشید فراهم میشود و تا ۳۰٪ از شعاع، فرایند همجوشی هستهای به تمامی میایستد و دیگر ادامه نمییابد. دیگر جاهای ستاره از راه جابجایی انرژی از مرکز به لایههای بیرونی گرم میشود. کارمایهٔ پدید آمده در هسته پس از گذر از لایههای پی در پی وارد شیدسپهر میشود و از آنجا به صورت نور یا انرژی جنبشی ذرات به فضا میگریزد.[۴۶][۴۷]
در هستهٔ خورشید در هر ثانیه، زنجیرهٔ پروتون-پروتون ۹٫۲×۱۰۳۷ بار روی میدهد. از آنجایی که در این فرایند چهار پروتون آزاد (هستهٔ هیدروژن) همزمان درگیر است پس در هر ثانیه ۳٫۷×۱۰۳۸ پروتون به ذرهٔ آلفا (هستهٔ هلیوم) دگرگون میشود به زبان دیگر ۶٫۲×۱۰۱۱ کیلو در ثانیه. در مجموع میتوان گفت در سراسر خورشید نزدیک به ۸٫۹×۱۰۵۶ پروتون آزاد دگرگون میشود.[۴۷] میدانیم که در هر همجوشی و دگرگونی هیدروژن به هلیوم نزدیک به ۰٫۷٪ از حرم به انرژی دگرگون میشود.[۴۸] پس خورشید در هر ثانیه ۴٫۲۶ میلیون تن جرم را در دگرگونی ماده-انرژی درگیر میکند. یا میتوان گفت ۳۸۴٫۶ یوتا وات[۱] (۳٫۸۴۶×۱۰۲۶) یا ۹٫۱۹۲×۱۰۱۰ مگاتن TNT در هر ثانیه. این مقدار جرم از میان نمیرود بلکه بر پایهٔ همارزی جرم و انرژی به صورت انرژی تابشی در میآید.
مقطع عرضی یک ستاره مانند خورشید (ناسا)
توان تولید انرژی در هسته با کمک همجوشی، بسته به فاصله از مرکز خورشید تفاوت میکند. برپایهٔ شبیهسازیها چنین برآورد شده که توان در مرکز خورشید ۲۷۶٫۵ watts/m۳ است.[۴۹] چگالی توان تولیدی خورشید بیشتر نزدیک به سوخت و ساز ب*دن یک خزندهاست تا یک بمب اتم. قلّهٔ توان تولیدی خورشید با انرژی گرمایی تولید شده در یک فرایند فعال کمپوست مقایسه میشود. انرژی بسیار بالای بیرون آمده از خورشید نه به این دلیل که خورشید در یکای حجم توان بسیار بالایی تولید میکند بلکه به این دلیل است که حجم بسیار بزرگی دارد.
نرخ فرایند همجوشی هسته که در هستهٔ خورشید رخ میدهد در تعادل بسیار ظریفی است که پیوسته خود را اصلاح میکند تا در تعادل بماند: اگر میزان همجوشی اندکی بیش از اندازهای باشد که اکنون است، آنگاه هسته به شدت گرم میشود، در برابر نیروی وزن لایههای بیرونی از هر سو گسترش مییابد، با این کار نرخ همجوشی کاهش مییابد و آشفتگی اصلاح میشود. اگر همجوشی اندکی کمتر از مقدار همیشگی آن باشد، هسته سرد و دچار جمع شدگی میشود، با این کار نرخ همجوشی افزایش مییابد و به تعادل بازمیگردد.[۵۰][۵۱]
پرتوهای گامای (فوتونهای بسیار پرانرژی) آزاد شده از واکنش همجوشی پس از چند میلیمتر پلاسمای خورشیدی جذب میشوند و دوباره با اندکی انرژی کمتر در جهتهای تصادفی تابیده میشوند؛ بنابراین برای یک فوتون زمان بسیار زیادی میکشد تا به سطح خورشید برسد. برآوردها نشان میدهد که برای یک فوتون ۱۰٬۰۰۰ تا ۱۷۰٬۰۰۰ سال طول میکشد تا در خورشید جابجا شود.[۵۲] ما برای نوترینو تنها ۲٫۳ ثانیه زمان بـرده میشود تا به سطح خورشید برسد. نزدیک به ۲ درصد از انرژی کل تولیدی خورشید مربوط به این ذرهاست.
در پایان سفر از لایهٔ همرفتی بیرونی و رسیدن به سطح شفاف شیدسپهر، فوتونها به صورت نور دیدنی در فضا تابیده میشوند. پیش از گریز از سطح خورشید، هر یک پرتوی گاما در هستهٔ خورشید به چندین میلیون فوتون نور دیدنی دگرگون میشود. در اثر واکنشهای همجوشی در هسته ذرههای دیگری به نام نوترینو هم آزاد میشوند. این ذرهها برخلاف فوتونها کمتر با ماده وارد واکنش میشوند بنابراین تقریباً همهٔ آنها میتوانند بیدرنگ از خورشید بگریزند. برای سالیان دراز شمار نوترینوهای آزاد شده از خورشید یا نوترینوهای شمرده شده با ابزارها یک-سوم شماری بود که نظریههای علمی پیشبینی میکرد. تا سال ۲۰۰۱ که دانشمندان دریافتند، دلیل این ناهماهنگی به ویژگی نوسان نوترینوها بازمیگردد: حقیقت این بود که شمار نوترینوهای تابیده شده از خورشید با شمار پیشبینی شده از سوی نظریه با هم برابر بودهاند اما ابزارهای شمارش تنها ۱⁄۳ آنها را شمرده بودند و باقیمانده را از دست داده بودند و این به دلیل تغییر مزهٔ نوترینوها (به معنی: عدد کوانتومی ذرهٔ بنیادی) در هنگام تشخیص با ابزار بود.[۵۳]
ناحیهٔ تابشی نوشتار اصلی: ناحیهٔ تابشی
در ناحیهٔ نزدیک به ۰٫۷ شعاع خورشید یا پایینتر، مواد خورشیدی بسیار گرم و چگال اند آنقدر که بتوانند گرمای زیاد هسته را از راه تابش گرمایی به بیرون بتابانند.[۵۴] در این ناحیه رفتار همرفتی دیده نمیشود. با اینکه دمای ماده از ۷ میلیون کلوین به ۲ میلیون کلوین میرسد اما همچنان این مقدار کمتر از مقدار پیشبینی شده برای کاهش دما نسبت به افزایش ارتفاع است. پس این کاهش دما نمیتواند از راه همرفت صورت گیرد.[۴۳] در این بازه انرژی از راه تابش فوتون توسط یونهای هیدروژن و هلیم روی میدهد؛ که البته این فوتونها هم مسافت بسیار کوتاهی را پیش میروند و خیلی زود توسط یونهای دیگر دوباره جذب میشوند.[۵۴] چگالی هم از ۰٫۲۵ چگالی خورشید تا بالای بازهٔ تابشی نزدیک به ۱۰۰ برابر افت میکند و از ۲۰ g/cm۳ به ۰٫۲ g/cm۳ میرسد.[۵۴] میزان انرژی که خورشید در یک ثانیه تولید میکند برای تأمین برق جهان به مدت یک میلیون سال کافی است.[نیازمند منبع]
میان ناحیهٔ تابشی درونی و گردش اختلافی بیرونی ناحیهٔ همرفتی یک لایهٔگذار به نام Tachocline پدید میآید، این ناحیه در یک سوم بیرونی شعاع خورشید جای دارد. در این ناحیه میان ناحیهٔ تابشی با گردش یکنواخت و گردش اختلافی در ناحیهٔ همرفتی یک شکاف بزرگ (دگرگونی ناگهانی در رفتار) پدید میآید. شرایطی که در آن لایههای افقی پی در پی بر روی یکدیگر لیز میخورند.[۵۵] جریان سیال در ناحیهٔ همرفتی در بالا، از بالا تا پایین لایه به آرامی کم میشود تا در پایینترین نقطه ناپدید شود. تا به این ترتیب با ویژگیهای آرام ناحیهٔ تابشی در پایین، هماهنگ شود. امروزه چنین گمان میشود که یک پویایی مغناطیسی در میانهٔ این لایه باعث پدید آمدن میدان مغناطیسی خورشید شدهاست.[۴۳]
ناحیهٔ همرفتی
در لایهٔ بیرونی خورشید، یعنی از سطح آن تا عمق نزدیک به ۲۰۰٬۰۰۰ کیلومتری (یا ۷۰٪ شعاع خورشید) پلاسمای خورشید به اندازهٔ کافی چگال یا د*اغ نیست تا بتواند انرژی گرمایی لایههای درونی را از راه تابش به بیرون برساند. به عبارت دیگر به جای ناحیهای تابنده، ناحیهای مات است. در نتیجه انرژی گرمایی از راه همرفت و ستونهای د*اغ جابجا میشود و به سطح خورشید میرسد. هنگامی که مواد در سطح خورشید کمی خنک میشود به عمق خورشید جایی که رفت و برگشتهای همرفتی آغاز شده بود، فروبرده میشود تا دوباره از بالای ناحیهٔ تابشی گرما دریافت کند. در لایهای از خورشید که با چشم میتوان آن را دید، دما تا ۵٬۷۰۰ کلوین افت میکند و چگالی تنها 0.2 g/m۳ است (نزدیک به ۱/۶۰۰۰۰ چگالی هوا در سطح دریاها).[۴۳]
ستونهای د*اغ همرفتی بر روی سطح خورشید جا میاندازند این ستونها از دور به صورت جودانه یا یک سری نقطه دیده میشود. آشفتگی پدید آمده در اثر رفت و برگشتهای همرفتی در بیرونیترین لایهٔ بخش درونی خورشید، باعث ایجاد یک پویایی در «اندازهٔ کوچک» میشود که در نتیجهٔ آن یک شمال و جنوب مغناطیسی در سراسر سطح خورشید پدید میآید.[۴۳] ستونهای د*اغ خورشید به شکل سلولهای بنارد است در نتیجه هندسهٔ منشوری شش ضلعی به خود میگیرد.[۵۶] انجمن رمان نویسی
دمای مؤثر یا جسم سیاه خورشید (۵۷۷۷ کلوین) دمایی است که یک جسم سیاه هم اندازهٔ خورشید باید داشته باشد تا به اندازهٔ خورشید توان تولید داشته باشد.
نوشتار اصلی: شیدسپهر
سطح دیدنی خورشید یا شیدسپهر، لایهای است که در زیر آن خورشید در برابر نور دیدنی، کدر میشود.[۵۷] بالای شیدسپهر، نور سفید خورشید است که آزادانه در فضا تابیده میشود و همهٔ انرژی اش را از خورشید بیرون میبرد. تغییر اندازهٔ کدری خورشید به کاهش مقدار یونهای H− بستگی دارد چون این یون است که نور مرئی را به آسانی جذب میکند.[۵۷] در مقابل نوری که ما میبینیم در اثر واکنش الکترونها با اتم هیدروژن برای تولید یون H− تولید شدهاست.[۵۸][۵۹] شیدسپهر دهها تا صدها کیلومتر ضخامت دارد و گاهی کدری آن اندکی از هوای زمین هم کمتر میشود. چون بخش بالایی شیدسپهر از بخشهای پایینی خنک تر است، در یک تصویر خورشید میبینیم که مرکز خورشید روشنتر از لبههای آن است. به این پدیده تیرگی مرکز-لبه میگویند.[۵۷] نور سفید خورشید یک ناحیهٔ طیفی مربوط به جسم سیاه دارد که نشان میدهد دمای آن نزدیک به ۶۰۰۰ کلوین است و البته همراه با آن خطهای جذبی اتمی پراکنده دارد که به لایههای نازک روی شیدسپهر مربوط است. چگالی ذرهها در شیدسپهر نزدیک به ۱۰۲۳ m−۳ است. این مقدار ۰٫۳۷٪ شمار ذرهها در یکای حجم جو زمین در تراز دریاها است. ذرههای شیدسپهر را الکترونها و پروتونها تشکیل میدهد که میانگین ذرههای هوا ۵۸ برابر از آن سنگین تر است.[۵۴]
در آغاز طیفسنجی شیدسپهر، خطهای جذبی پیدا شده بود که با هیچیک از عنصرهای شیمیایی شناخته شده همخوانی نداشت. در ۱۸۶۸ نورمن لاکیر حدس زد که این خطهای جذبی مربوط به یک عنصر تازهاست. او این عنصر تازه را هلیم نامید، این نام، یادآور خورشیدخدای یونان، هلیوس بود. پس از ۲۵ سال، دانشمندان برای نخستین بار توانستند هلیم را در زمین درون ظرفی جمعآوری کنند و از دیگر عنصرها جدا کنند.[۶۰]
لحظات ابتدایی طلوع خورشید از بالای کاروانسرای دیر گچین جو خورشیدی همچنین ببینید: تاج خورشیدی و حلقهٔ تاج خورشیدی
از تمام خورشید فقط جو آن قابل مشاهدهاست ناحیهای که از لحاظ فعالیت نیز غنی است پایه جو خورشیدی شید سپهر است لکههای خورشیدی بر روی شید سپهر ظاهر میشوند لایه خارجی بعدی رنگین سپهر است تاج آخرین لایه جوی خورشید میباشد.
شید سپهر یک لایه نازک گ*از که بیشترین عمقی که میتوانیم آن را مشاهده کنیم و تابش قابل رویت از آن منتشر میشود وبر این سطح دانههای گذرا با عمر متوسط ۵ تا دهها دقیقه را مشاهده میکنیم شکلگیریهای روشن نامنظم که به وسیلهٔ رگههای تاریک احاطه شدهاند این دانه دار شدن خورشیدی لایه بالایی ناحیه جا به جایی خورشید است لایه گازی به ضخامت حدود ۰/۲r زمینی که درست زیر پایه شید سپهر قرار میگیرد در این منطقه انرژی گرمایی توسط جا به جایی منتقل میشود تودههای گرم
لکههای سطح خورشید در نقشه ساموئل دان
گ*از (سلولهای جا به جایی) بالا میروند و به صورت دانههای روشن ظاهر میشوند و انرژیشان را در شید سپهر تخلیه میکنند گازهای سرد تر پایین میآیند. طیف پیوستار سرار قرص خورشیدی یک دمای مؤثر _استفان بولتزمن_ 5800k را برای شید سپهر تعریف میکند از میان شید سپهر به سمت بیرون دما به شدت پایین میآید و سپس مجدداً در حوالی ۵۰۰km داخل رنگین سپهر شروع به بالا رفتن میکند تا این که به دماهای بسیاربالا درتاج میرسد. شید سپهر یک طیف پیوسته جسم سیاه گسیل میدارد لذا بایستی در طول موجهای مرئی کدر باشد اما چگالیها در اینجا بسیار کمتر از مقداری است که گ*از برای کدر بودن و تولید تابش پیوسته جسم سیاه لازم دارد.[۶۱]
میدان مغناطیسی
صفحهٔ جریان نورکره در بیرون خورشید هم گسترش یافته و بر سامانهٔ خورشیدی اثر میگذارد. این پدیده، نتیجهٔ تأثیر میدان مغناطیسی درحال گردش خورشید بر روی پلاسما در محیط میانسیارهای است.[۶۲] همچنین ببینید: میدان مغناطیسی ستارهای
خورشید ستارهای فعال از دیدگاه مغناطیسی است. یک میدان مغناطیسی توانا دارد که سال به سال اندکی سویش تغییر میکند تا اینکه هر یازده سال وارون میشود.[۶۳] میدان مغناطیسی خورشید دارای اثرهای بسیاری است که به مجموعهٔ آنها فعالیت خورشیدی گفته میشود. از جملهٔ آنها، لکههای خورشیدی بر سطح آن، شرارهٔ خورشیدی و دگرگونیها در بادهای خورشیدی است که باعث جابجایی ماده درون سامانهٔ خورشید است.[۶۴] فعالیتهای خورشید بر زمین هم اثر میگذارد. برای نمونه میتوان به شفق قطبی که در ناحیههای نزدیک به قطب دیده میشود یا دیدن شکست یا خرابی در موجهای رادیویی و توان الکتریکی اشاره کرد. گمان آن میرود که میدان مغناطیسی خورشید نقش مهمی در ساخت و کامل شدن سامانهٔ خورشیدی داشته باشد. همچنین این فعالیتهای خورشیدی، ساختار بخش بیرونی هواکرهٔ زمین را هم تغییر میدهد.[۶۵]
به دلیل دمای بسیار بالای خورشید، تمام مادهٔ موجود در آن در حالت گازی و پلاسما است. این ویژگی به خورشید این توان را میدهد تا در مدار استوایی اش تندتر (نزدیک ۲۵ روز) از عرضهای جغرافیایی بالاتر (نزدیک به ۳۵ روز در ناحیهٔ قطبی) بگرد خود بچرخد.[۶۶][۶۷] گردش اختلافی خورشید در عرضهای جغرافیایی گوناگون آن باعث میشود تا با گذر زمان خطهای میدان مغناطیسی خورشید در هم پیچیده شود، حلقههای میدان مغناطیسی در سطح خورشید فوران کند و در نتیجه لکه و زبانهٔ خورشیدی پدید آید. در اثر همین پیچش است که پویایی خورشیدی و چرخهٔ یازده سالهٔ وارونه شدن میدان مغناطیسی خورشید پدیدار میشود.[۶۶][۶۷]
میدان مغناطیسی خورشید بسیار فراتر از خود خورشید را هم دربر میگیرد. بادهای خورشیدی مغناطیسی پلاسمایی، میدان مغناطیسی خورشید را به بیرون از خورشید میبرد، پدیدهای که امروزه به آن میدان مغناطیسی میانسیارهای گفته میشود.[۶۸] پلاسما تنها میتواند در راستای خطهای میدان مغناطیسی جابجا شود برای همین میدان مغناطیسی میانسیارهای به صورت شعاعی گسترش یافتهاست. چون میدان مغناطیسی بالا و پایین مدار استوایی خورشید قطبشهای متفاوت از یا به سوی خورشید دارند، یک لایهٔ نازک جریان در صفحهٔ استوایی خورشید پدید میآید که به آن صفحهٔ جریان نورکره گفته میشود.[۶۸] در فاصلههای دور، چرخش خورشید باعث پیچیده شدن میدان مغناطیسی و صفحهٔ جریان به شکل حلزونی ارشمیدس میشود؛ مانند سازهٔ مارپیچ پارکر.[۶۸] میدان مغناطیسی میانسیارهای بسیار قوی تر از اجزای میدان مغناطیسی دوقطبی خورشید است. میدان مغناطیسی دوقطبی ۵۰ تا ۴۰۰ میکروتسلایی خورشید (در شیدسپهر) با توان سهٔ فاصله کاهش مییابد و در ن*زد*یک*یهای زمین به ۰٫۱ نانوتسلا میرسد. اما دادههای بدست آمده توسط فضاپیماها نشان میدهد میدان مغناطیسی میانسیارهای در ن*زد*یک*ی زمین ۱۰۰ برابر قوی تر است.[۶۹]
خورشید ساختار شیمیایی
خورشید در درجهٔ نخست از عنصرهای هیدروژن و هلیم ساخته شدهاست. این عنصرها به ترتیب ۷۴٫۹٪ و ۲۳٫۸٪ از جرم خورشید را در شیدسپهر میسازند.[۷۰] در ستارهشناسی به همهٔ عنصرهای سنگین تر فلز میگوییم، فلزها کمتر از ۲٪ جرم خورشید را میسازند. فراوانترین این فلزها عبارتند از: اکسیژن (نزدیک به ۱٪ جرم خورشید)، کربن (۰٫۳٪)، نئون (۰٫۲٪) و آهن (۰٫۲٪)[۷۱].
خورشید ترکیب شیمیایی خود را از محیط میانستارهای به ارث بـردهاست؛ و خود هلیم و هیدروژن هم به جای مانده از هستهزایی مهبانگاند. فلزها از هستهزایی ستارهای پدید آمدهاند. ستارههایی که دورهٔ تکامل خود را به پایان رساندهاند و مواد خود را به محیط میان ستارهای پیش از ساخت خورشید بازگرداندهاند.[۷۲] ساختار شیمیایی شیدسپهر نمایانگر ساختار اساسی سامانهٔ خورشیدی است.[۷۳] البته از هنگامی که خورشید ساخته شده، بخشی از هلیم و عنصرهای سنگین از شیدسپهر گریختهاند برای همین هماکنون شیدسپهر دارای هلیم کمتری نسبت به گذشته دارد و عنصرهای سنگین هم نسبت به پیشستارهٔ خورشید ۸۴٪ اندازهٔ گذشته را دارند. ۷۱٪ پیشستارهٔ خورشید از هیدروژن، ۲۷٫۴٪ از هلیم و ۱٫۵٪ از فلزها ساخته شده بود.[۷۰]
در بخشهای درونی خورشید به دلیل همجوشی هستهای، هیدروژنها به هلیم دگرگون میشوند. برای همین میتوان گفت درونیترین بخش خورشید نزدیک به ۶۰٪ هلیم دارد ولی درصد فلزها ثابت است. از آنجایی که بخش درونی خورشید تنها پرتوزایی میکند و همرفتی ندارد (نگاه کنید به بخش ناحیهٔ تابشی در بالا) برای همین هیچیک از دستاوردهای همجوشی در هسته به سوی بالا و شیدسپهر نمیآید.[۷۴]
فراوانی عنصرهای سنگین خورشیدی که در بالا توضیح داده شد را با کمک طیفسنجی نجومی شیدسپهر خورشید و اندازهگیری فراوانیها در شهابسنگهایی که هرگز آن قدر د*اغ نشدهاند که به دمای ذوب برسند، بدست میآوریم. گمان آن میرود که این شهابسنگها ساختار پیشستارهٔ خورشید را نگه داشته باشند و عنصرهای سنگین بر آنها اثر نگذاشته باشند. نتیجهٔ هر دوی این روشها با هم همخوانی دارد.[۱۳]
گروه آهن
در دههٔ ۱۹۷۰ پژوهشها بر روی وجود عنصرهای گروه آهن در خورشید متمرکز بود.[۷۵][۷۶] با اینکه پژوهشهای گستردهای صورت گرفت اما فراوانی برخی از عنصرهای گروه آهن مانند کبالت و منگنز چندان روشن نشد دست کم تا سال ۱۹۷۸ چنین بود؛ و این به دلیل ساختار بسیار ریز این عنصرها بود (منظور تفاوت ناچیز در ترازهای انرژی است).[۷۵]
نخستین فهرست کامل از توان نوسان عنصرهای یونی شدهٔ گروه آهن در دههٔ ۱۹۶۰ میلادی بدست آمد و تا سال ۱۹۷۶ محاسبههای آن کامل شد.[۷۷]
چرخههای خورشید
نوشتار اصلی: لکه خورشیدی لکههای خورشیدی و چرخهٔ آنها
اندازهگیری دگرگونیهای چرخهٔ خورشیدی در یک بازهٔ سی ساله.
پیشینهٔ لکههای خورشیدی در ۲۵۰ سال گذشته، به خوبی میتوان دید که چرخهٔ لکهها تقریباً هر ۱۱ سال یک بار تکرار میشود.
هنگام مشاهدهٔ خورشید اگر فیلترهای مناسب را بکار بریم بیدرنگ میتوانیم لکههای خورشید را ببینیم. این لکهها به دلیل داشتن دمایی پایینتر از پیرامونشان، به صورت سطحی تاریک تر دیده میشوند. شدت فعالیت مغناطیسی در لکههای خورشیدی بسیار بالا است تا آنجا که فرایندهای همرفتی هم توسط میدان مغناطیسی بسیار قوی آن ناحیه مهار میشود برای همین انرژی گرمایی کمتری از درون د*اغ خورشید به سطح این ناحیهها میرسد. میدان مغناطیسی بسیار قوی باعث داغی بسیار بالای تاج خورشیدی میشود و ناحیههای فعالی را پدیدمیآورد. این ناحیههای فعال منبع شرارههای شدید خورشیدی و خروج جرم از تاج خورشیدی است. بزرگترین لکههای خورشیدید میتوانند تا دهها هزار کیلومتر پهنا داشته باشند.[۷۸]
شمار لکههای خورشیدی قابل دید ثابت نیست و هر ۱۱ سال همراه با چرخهٔ خورشیدی تغییر میکند. معمولاً اندکی از لکههای خورشیدی قابل دیدند و حتی گاهی هیچکدام دیده نمیشوند. لکههایی که دیده میشوند در عرضهای بالای خورشید قرار دارند. هرچه که چرخهٔ خورشید بیشتر پیش رود شمار لکهها بیشتر و به مدار استوایی خورشید نزدیکتر میشوند. این پدیده را قانون اشپورر توضیح میدهد. لکههای خورشیدی بیشتر به صورت جفت با قطبهای مخالف مغناطیسیاند. قطبهای مغناطیسی لکههای مهم خورشید به صورت یک در میان در هر چرخهٔ خورشیدی تغییر میکند به این ترتیب یک لکه میتواند در یک دوره قطب مغناطیسی شمال و در دورهٔ آینده قطب مغناطیسی جنوب باشد.[۷۹]
درخشش خورشید ارتباط مستقیم با فعالیتهای مغناطیسی آن دارد به همین دلیل چرخهٔ خورشیدی تأثیر مهمی بر هوای فضای پیرامون کرهٔ زمین و آب و هوای خود زمین میگذارد.[۸۰]
چرخههای بلندمدت
به تازگی یک نظریه ارائه شدهاست که ادعا میکند در هستهٔ خورشید ناپایداریهایی وجود دارد که باعث پدید آمدن نوسانهایی با دورهٔ بازگشت یا ۴۱٬۰۰۰ یا ۱۰۰٬۰۰۰ سال میشود. این نظریه نسبت به چرخههای میلانکوویچ، عصر یخبندان را بهتر توضیح میدهد.[۸۱][۸۲]
چرخهٔ زندگی
نوشتارهای اصلی: تشکیل و تکامل منظومه شمسی و تکامل ستارگان
نمودار تکامل درخشندگی، شعاع و دمای مؤثر خورشید در مقایسه با امروز آن.[۸۳]
خورشید نزدیک به ۴٫۵۷ میلیارد سال از فروریزی بخشی از یک ابر مولکولی بسیار بزرگ که بیشتر از هیدروژن و هلیم ساخته شده بود پدید آمدهاست؛ این ابر مولکولی احتمالاً زادگاه ستارگان بسیاری بودهاست.[۸۴] این سن با کمک شبیهسازهای رایانهای تکامل ستارگان برآورد شدهاست.[۸۵] نتیجهٔ بدست آمده با دادههای مربوط به سنیابی با پرتوسنجشی (تعیین سن بر پایهٔ واپاشی عناصر پرتوزا) قدیمیترین مواد سامانهٔ خورشیدی که به ۴٫۵۶۷ میلیارد سال پیش بازمیگردد، سازگار است.[۸۶][۸۷] پژوهش بر روی کهنترین شهابسنگها، نشانههایی از هستههایی پایدار که محصول واپاشی ایزوتوپهای با نیمه عمر بسیار کوتاه بودهاند را، آشکار کردهاست. برای نمونه میتوان به آهن-۶۰ اشاره کرد. این ماده تنها در اثر انفجار ستارههای با عمر کوتاه پدید میآید. به این ترتیب میتوان چنین نتیجه گرفت که در جایی که خورشید شکل گرفتهاست گمان آن میرود که یک یا بیش از یک ابرنواختر حضور داشتهاست. یک موج ناگهانی از یکی از ابرنواخترهای کناری، آغازگر پدیداری خورشید بودهاست. این موج ناگهانی باعث فشردگی گازها در میانهٔ ابر مولکولی و در برخی ناحیهها باعث فروریختن آنها زیر گرانش میانشان شدهاست.[۸۸] به دلیل پایستگی تکانهٔ زاویهای، هرگاه یک بخش کوچک از این ابر فرو ریزد، با یک فشار افزاینده، شروع به گردش و گرم شدن میکند. با این رویداد بیشتر جرم در یک ناحیه متمرکز میشود و باقیماندهٔ آن در یک صفحه در پیرامون پراکنده میگردد. این جرم باقیمانده بعدها به سیارههای پیرامون یا دیگر جرمهای سامانهٔ خورشیدی دگرگون شود. گرانش و فشار بالا در هستهٔ ابر، گرمای بسیار زیادی را پدیدمیآورد. هر چه هسته، گ*از بیشتری را از صفحهٔ پیرامون به خود جذب کند، شرایط واکنش همجوشی هستهای بیشتر فراهم میشود و به این ترتیب خورشید به دنیا میآید.
میتوان گفت اکنون خورشید در دوران میانسالی خود قرار دارد. در این بازه واکنشهای همجوشی هستهای در هستهٔ آن رخ میدهد و هیدروژن به هلیم تبدیل میشود. در هر ثانیه بیش از چهار میلیون تُن جرم ماده به انرژی دگرگون میشود و نوترینو و نور سفید به جای میماند. با این روند تا به حال نزدیک به ۱۰۰ برابر جرم زمین، ماده به انرژی دگرگون شدهاست. خورشید نزدیک به ۱۰ میلیارد سال در ردهٔ ستارهٔ رشتهٔ اصلی (میانسالی) باقی میماند.[۸۹]
خورشید به اندازهٔ کافی جرم ندارد تا مانند یک ابرنواختر منفجر شود. به جای آن در نزدیک به ۵ میلیارد سال وارد حالت غول سرخ میشود. در این حالت در هنگامی که سوخت هیدروژن درون هسته مصرف شدهاست، لایهٔ بیرونی گسترش مییابد. هسته دچار جمع شدگی و گرم شدن میشود. حال که ستاره گرم تر شدهاست همجوشی در هیدروژنی که در لایهٔ بیرونی ستاره باقیمانده بود، از سر گرفته میشود این بار در پوستهای پیرامون هستهٔ هلیمی. هر چه هلیم بیشتری تولید میشود، پوسته بیشتر گسترش مییابد. هرگاه که دمای هسته به اندازهٔ کافی بالا رود و به ۱۰۰ میلیون کلوین برسد، همجوشی هلیم در هسته آغاز میشود و کربن پدید میآید.[۳۷] در ادامهٔ مرحلهٔ غول سرخ، نوسانهای حرارتی باعث میشود تا خورشید لایهٔ بیرونی خود را از دست دهد و از خود یک سحابی سیارهنما بسازد. تنها چیزی که پس از دور انداختن لایههای بیرونی باقی میمانند، هستهٔ بسیار د*اغ خورشید است که کمکم سرد میشود و پس از چندین میلیارد سال به کوتولهٔ سفید دگرگون میشود. این داستان تکامل یک ستاره از ستارهٔ با جرم کم به جرم متوسط است.[۹۰][۹۱]
جابهجایی قطبها
دانشمندان ناسا از جابهجایی قطب شمال و جنوب خورشید در سال ۱۲۹۲ شمسی خبر داده و گفتند که این جابجایی تأثیر قابل توجهی بر کل منظومه خورشیدی میگذارد. قطبهای خورشید هر ۱۱ سال یکبار تغییر میکند، پدیدهای که دلیل آن چندان روشن نیست. با این حال دانشمندان معتقدند تغییر سرعت جریان پلاسما از استوا به قطب (و بالعکس) در سطح خورشید و اینکه سرعت گردش خورشید بدور خود در قطب بیشتر از استوا است نقش عمدهای در روند جابهجایی قطبهای خورشید دارند.[۹۲]
در تغییر قطبهای خورشید که به تدریج و در طی یازده سال صورت میگیرد؛ لکههای خورشیدی که فعالیت مغناطیسی شدیدی دارند متلاشی شده و به تدریج به سمت یکی از قطبهای خورشید حرکت میکنند تا اینکه جایگزین قطب قبلی شوند. جابجایی قطبی خورشید تغییرات میانکهکشانی ایجاد میکند که به صورت توفانهای مغناطیسی ظاهر میشود. این توفانها ممکن است بر لایه یونکره جو زمین تأثیر بگذارند و در ارتباطات ماهوارهای و رادیویی اختلالاتی ایجاد کنند. یکی از تأثیرات این جابجایی قطبی که در زمین مشاهده خواهد شد، بیشتر شدن دفعات، گستردگی و پیدایی شفقهای قطبی است.[۹۲]
سرنوشت زمین
اگر خورشید به یک غول سرخ دگرگون شود، ممکن است شعاعی بزرگتر از مدار گردش زمین به دور خورشید پیدا کند و شعاع آن ۱ AU یا ۱٫۵×۱۰۱۱ متر شود، این عدد ۲۵۰ برابر شعاع کنونی خورشید است.[۹۳] در این هنگام خورشید در شاخهٔ مجانب غولستارهها جای گرفته و میتوان گفت که نزدیک به ۳۰ درصد از جرمش را به دلیل بادهای خورشیدی از دست دادهاست. در گذشته باور این بود که به دلیل کاهش جرم خورشید، سیارههای پیرامونی در مدارهای بزرگتر و دورتری نسبت به خورشید به گردش میپردازند و زمین جدا از خورشید باقی میماند اما پژوهشهای تازه نشان دادهاست که زمین توسط خورشید بلعیده میشود.[۹۳]
اگر زمین از دست رس خورشید دور بماند نیز همهٔ آبش بخار خواهد شد و بیشتر هواکرهٔ آن به بیرون فرار خواهد کرد. در گذشته نور خورشید بسیار ضعیف بود، شاید به همین دلیل در زمانهای دورتر از یک میلیارد سال پیش، هنوز زندگی در خشکی پدید نیامده بود. از گذشته تا امروز خورشید درخشان تر شدهاست (هر یک میلیارد سال، ۱۰٪ درخشان تر) و این روند در آینده هم ادامه خواهد داشت و سطح آن کمکم گرمتر خواهد شد تا آنجا که تا یک میلیارد سال دیگر سطح زمین آنقدر گرم میشود که دیگر به سختی بتوان آب را در حالت مایع در آن پیدا کرد و این به معنی پایان زندگی در زمین است .[۹۳][۹۴]
چرخهٔ زندگی خورشید، اندازههای کشیده شده دقیق نیست. نور خورشید
نوشتار اصلی: نور سفید
مقایسهٔ بزرگی ظاهری خورشید در سطح سیارههای تیر، زهره، زمین، بهرام، هرمز، کیوان، آهوره، نپتون و پلوتو
همواره نخستین منبع انرژی در زمین، نور خورشید بودهاست. ثابت خورشید مقدار توانی است که خورشید در یکای سطح، در زمین آزاد میکند که ارتباط مستقیم با نور سفید دریافتی از خورشید دارد. ثابت خورشید در فاصلهٔ یک واحد نجومی از خورشید (برابر با فاصلهای که زمین یا ن*زد*یک*ی آن تا خورشید دارد) تقریباً برابر با ۱٬۳۶۸ W/m۲ است.[۹۵] نور خورشید با گذر از جو زمین ضعیف تر میشود و توان کمتری را به سطح میرساند. در شرایطی که آسمان شفاف، و خورشید نزدیک سرسو باشد، توانی نزدیک به ۱۰۰۰ وات بر مترمربع بدست خواهد آمد.[۹۶]
نور خورشید در شامگاه.
نور خورشید را میتوان با کمک فرایندهای طبیعی و ساخت انسان مهار کرد. فرایند نورساخت در اندامهای گیاهان انرژی نور خورشید را جذب میکند و آن را به صورت شیمیایی (اکسیژن و ترکیبهای کاهش یافتهٔ کربن) آزاد میکند. همچنین انرژی انبار شده در نفت خام و سوختهای سنگوارهای، خود غیر مستقیم به انرژی خورشید و فرایند نورساخت وابستهاست. علاوه بر روشهای طبیعی با کمک ابزارهای ساخت انسان هم میتوان یا مستقیم از گرمای خورشید بهره برد یا با کمک سلولهای خورشیدی، نور خورشید را به انرژی الکتریکی دگرگون کرد.[۹۷]
جای خورشید در میانهٔ کهکشان
جابجایی گرانیگاه سامانهٔ خورشیدی نسبت به خورشید.
نمایی از کهکشان راه شیری که در آن جای خورشید هم نشان داده شدهاست.
خورشید در لبهٔ درونی بازوی شکارچی کهکشان راه شیری، در ابر میانستارهای محلی یا Gould Belt در فاصلهای میان ۷٫۵ تا ۸٫۵ کیلوپارسک (۲۵٬۰۰۰ تا ۲۸٬۰۰۰ سال نوری) از مرکز کهکشانی، جای دارد.[۹۸][۹۹][۱۰۰][۱۰۱] در حالی که در میانهٔ حبابهای محلی، فضایی که در آن گازهای د*اغ با چگالی کمتر از معمول پراکندهاند و احتمالاً توسط باقیماندهٔ ابرنواختر Geminga تولید شدهاند، قرار دارد.[۱۰۲] فاصلهٔ میان بازوی محلی و بازوی بعدی در بیرون، بازوی برساووش، نزدیک به ۶۵۰۰ سال نوری است.[۱۰۳] دانشمندان جایی که خورشید و البته سامانهٔ خورشیدی جای دارد را ناحیهٔ قابل زندگی کهکشانی نامیدهاند.
آماج خورشیدی، راستایی است که خورشید در آن سفر میکند و نسبت به ستارگان همسایه در کهکشان راه شیری سنجیده میشود. روی هم رفته، خورشید به سوی ستارهٔ کرکرس نشسته در صورت فلکی دیگپایه و با زاویهای نزدیک به ۶۰ درجهٔ آسمان نسبت به جهت مرکز کهکشانی سفر میکند.
انتظار آن میرود که مدار گردش خورشید پیرامون کهکشان، تقریباً بیضی گون باشد که به دلیل مارپیچ بودن بازوهای کهکشانی و توزیع ناهمسان جرم در آنها، با کمی آشفتگی همراه باشد. همچنین خورشید نسبت به صفحهٔ کهکشان، تقریباً ۲٫۷ بار بر گردش، به بالا و پایین نوسان میکند. این بحث وجود دارد که با گذر خورشید از ناحیهٔ پرچگالی کهکشان، شمار برخورد جرمهای آسمانی با زمین بیشتر میشود و در نتیجه انبوهی از جانوران و گیاهان در زمین از میان میروند.[۱۰۴] روی هم رفته ۲۲۵ تا ۲۵۰ میلیون سال طول میکشد تا سامانهٔ خورشیدی یک بار پیرامون کهکشان بگردد (یک سال کهکشانی)[۱۰۵] پس باید انتظار داشت تا خورشید در طول زندگی اش، بتواند ۲۰ تا ۲۵ بار پیرامون کهکشان بگردد. سرعت حرکت سامانهٔ خورشیدی پیرامون مرکز کهکشانی نزدیک به 251 km/s است.[۱۰۶] با این سرعت ۱٬۱۹۰ سال طول میکشد تا سامانهٔ خورشیدی بتواند در مسافتی به درازی یک سال نوری سفر کند. همچنین ۷ روز طول میکشد تا به اندازهٔ یک واحد نجومی جابجا شود.[۱۰۷]
سامانهٔ خورشیدی
نوشتار اصلی: منظومه شمسی
مقایسهٔ بزرگی خورشید و سیارههای پیرامون
خورشید به تنهایی ۹۹٫۸۶٪ از جرم سامانهٔ خورشیدی را دربرمیگیرد. ۰٬۱۴٪ باقیمانده از آن سیارههای پیرامون است.
نسبت جرم خورشید به جرم سیارههای پیرامون
تیر ۶٬۰۲۳٬۶۰۰ هرمز ۱٬۰۴۷
ناهید ۴۰۸٬۵۲۳ زحل ۳٬۴۹۸
زمین و ماه ۳۲۸٬۹۰۰ اورانوس ۲۲٬۸۶۹
مریخ ۳٬۰۹۸٬۷۱۰ نپتون ۱۹٬۳۱۴ پرسشهای نظری
مسئلهٔ نوترینوی خورشیدی
برخی مراحل از واکنشهای زنجیرهٔ pp در مرکز خورشید، تولید نوترینو میکند. این نوترینوها به راحتی از میان لایههای خارجی عبور کرده، اطلاعاتی پیرامون شرایط مرکز خورشید در اختیار ما قرار میدهند. در دههٔ ۱۹۷۰، زمانی که برای نخستین بار نوترینوهای خورشیدی رصد شد، دانشمندان دریافتند که تعداد آنها تنها یک سوم تعداد پیشبینی شدهاست. این ناسازگاری را مسئلهٔ نوترینوی خورشیدی (Solar neutrino problem) مینامند. در آزمایشهای اولیه، تنها نوترینوهای تولیدی در شاخههای ppII و ppIII مشاهده شدند. فقط بخش اندکی از درخشندگی خورشید وابسته به این واکنشها است، از این رو مشخص نبود که با این نتایج، عاقبت مدلهای خورشیدی چه میشود. در دههٔ ۱۹۹۰ نوترینوهای شاخهٔ ppI، یعنی شاخهٔ اصلی در زنجیرهٔ pp، رصد شدند. اگرچه در اینجا ناسازگاری با مدلهای استاندارد اندکی کاهش یافت، اما مسئلهٔ نوترینو همچنان پابرجا بود. شاید مشهورترین توضیح برای مسئلهٔ نوترینوی خورشیدی بر چیزی که نوسانهای نوترینویی (Neutrino oscillation) نامیده میشود استوار است. بر اساس این توضیح، اگر نوترینو جرم کوچکی داشته باشد، یعنی حدود ۰/۰۱ الکترونولت، یک نوترینوی الکترونی میتواند در مسیر حرکت از میان بخشهای خارجی خورشید، به نوترینوی میونی یا تائوئی تبدیل شود. در آزمایشهای نخستین، تنها نوترینوهای الکترونی مشاهده میشد که تنها بخشی از تمام نوترینوهای تولیدی بودند. در سال ۲۰۰۱ نتایج آزمایشهای انجام شده در کانادا و ژاپن اعلان شد. در این آزمایشها، تعداد نوترینوی الکترونی و تعداد کل نوترینوهای رسیده از خورشید مورد اندازهگیری قرار میگرفت. شار کلی با پیشبینیهای مدل استاندارد خورشید همخوانی داشت و این در حالی بود که شار نوترینوی الکترونی با مقادیر کمتری که در اندازهگیریهای اولیه نوترینو بهدست آمده بود برابری میکرد. این نتیجه اثباتی بود بر وجود نوسانات نوترینوی خورشیدی که بر اثر آن، تعدادی از نوترینوهای الکترونی تولیدی در مرکز خورشید به انواع دیگر تبدیل میشدند. در حال حاضر میتوان مسئله نوترینوی خورشیدی را حلشده دانست. این پاسخ یک پیروزی بزرگ برای مدل استاندارد خورشیدی بهحساب میآمد و بهوسیلهٔ آن وجود نوسانات نوترینویی نیز آشکار شد، چیزی که اثبات میکند نوترینو یک جرم کوچک ولی غیر صفر دارد. به نظر میرسد که مدل استاندارد فیزیک ذرات نیاز به بازنگری در برخی زمینهها دارد.[۱۰۸]
مسئلهٔ گرمای تاج خورشیدی
شیدسپهر یا همان سطح نورانی خورشید دارای دمایی نزدیک به ۶٬۰۰۰ کلوین است. بالای آن تاج خورشیدی جای دارد که دارای دمای ۱٬۰۰۰٬۰۰۰ تا ۲٬۰۰۰٬۰۰۰ کلوین است.[۱۰۹] ذمای بالای تاج خورشیدی نشان میدهد که این ناحیه به جز انتقال مستقیم گرما از شیدسپهر و از راه رسانایی گرمایی، منبع گرمایی دیگری هم دارد.[۶۸]
گمان آن میرود که انرژی لازم برای گرمایش بیشتر تاج خورشیدی از راه حرکتهای آشفتهٔ ناحیه همرفتی در زیر شیدسپهر بدست آمده باشد. دو سازوکار اصلی برای توضیح داغی بیشتر تاج خورشیدی پیشنهاد شدهاست.[۱۰۹] نخست موجهای گرمکنندهاست که در آن صوت، گرانش یا موجهای magnetohydrodynamic از راه آشفتگی در ناحیهٔ همرفتی تولید میشود.[۱۰۹] این موجها رو به بالا حرکت میکنند، در تاج خورشیدی پراکنده میشوند و انرژی خود را در محیط گازی به صورت گرما آزاد میکنند.[۱۱۰] دوم، گرمایش از راه آهنربایی (مغناطیسی) است که در آن انرژی آهنربایی به صورت پیوسته توسط حرکتهای شیدسپهر آزاد میشود با این کار به هم پیوستگی مغناطیسی روی میدهد به این معنی که انرژی مغناطیسی به انرژی جنبشی، گرمایی و شتاب ذره تبدیل میشود. چنین فرایندی به صورت شرارههای خورشیدی و هزاران رویداد مانند آن نمود پیدا میکند.[۱۱۱]
هماکنون روشن نیست که کدام یک از این پدیدهها، چنین گرمایی را در تاج خورشیدی پدیدمیآورند. دیده شده که همهٔ موجها به جز موج آلفون پیش از رسیدن به تاج خورشیدی پراکنده یا شکسته میشوند.[۱۱۲] موجهای آلفون به آسانی در تاج خورشیدی پراکنده نمیشوند.
مسئلهٔ کم نوری خورشید در جوانی
مدلهای نظری از پیشرفت خورشید میگوید که در ۳٫۸ تا ۲٫۵ میلیارد سال پیش در دوران آرکئن، خورشید تنها ۷۵ درصد درخشش امروزش را داشت. چونین ستارهٔ ضعیفی نمیتواند آب را به صورت مایع در سطح زمین نگه دارد پس زندگی نباید گسترش مییافت. از سوی دیگر نشانههای زمینشناسی میگوید که زمین از گذشته تا امروز چندان دستخوش بالا و پایین رفتنهای دمایی نشده بلکه در آغاز حتی گرم تر از امروزش هم بودهاست. پژوهشها به این نتیجه رسیدهاست که دلیل این تناقض به هواکرهٔ زمین بازمیگردد. زمین در آغاز، بسیار بیشتر از امروزش گازهای گلخانهای (مانند کربن دیاکسید، متان و/یا آمونیاک) در هواکرهٔ خود داشت. این گازها، گرما را به دام میاندازند و اجازه نمیدهند تا زمین به آسانی دمایش پایین بیاید برای همین با وجود کمتر بودن درخشش خورشید زمین گرم تر از امروز بودهاست.[۱۱۳]
تماشای خورشید و اثر آن
آنچه که چشم، هنگام بیماری فسفن میبیند.
اگر با چشم غیرمسلح به خورشید خیره شویم، درخشش آن میتواند آسیبرسان باشد. البته یک نگاه کوتاه و گذرا، به یک چشم معمولی که مردمک آن خیلی باز نشده باشد آسیبی نمیرساند.[۱۱۴][۱۱۵] با نگاه مستقیم به خورشید توانی نزدیک به ۴ میلی وات توسط نور خورشید در شبکیهٔ چشم آزاد میشود. این انرژی باعث گرم شدن چشم و آسیب زدن به سلولهای آن میشود به همین دلیل چشم دیگر نسبت به نور دریافتی به خوبی پاسخ نمیدهد. بیماریهایی مانند فسفن و کوری جزئی کوتاه مدت از آسیبهای خیره شدن به خورشید است.[۱۱۶][۱۱۷] تابش فرابنفش با گذر سالهای دراز از سن افراد و اندک اندک باعث زردی عدسی چشم و احتمالاً بیماری آبمروارید در افراد میشود. این بیماری به میزان دریافت عمومی فرابنفش بستگی دارد و به خیرگی با چشم غیرمسلح به خورشید، ارتباط ندارد.[۱۱۸] نگاه بلندمدت و با چشم غیرمسلح به خورشید اجازه میدهد تا پرتوهای فرابنفش زیادی وارد چشم شود در نتیجه ممکن است آسیبهایی مانند آفتابسوختگی در شبکیهٔ چشم پدید آید به ویژه هنگامی که پرتوهای فرابنفش شدید و متمرکز باشند.[۱۱۹][۱۲۰] این آسیبها جدی تر خواهد بود هنگامی که چشم جوان باشد یا عدسی (لنز) گذاشته شده در چشم تازه باشد چون در این وضعیت چشم پرتوهای فرابنفش بیشتری را نسبت به چشم معمولی در خود میپذیرد. همچنین هرگاه خورشید در زاویهٔ سرسو باشد و فرد از بلندی به آن خیره شود آسیب بیشتری به چشم میرسد.
اگر با کمک ابزارهای متمرکزکنندهٔ نور مانند دوربین دوچشمی به خورشید نگاه کنیم و از فیلترهای بازدارندهٔ فرابنفش استفاده نکنیم تا نور خورشید ضعیف شود در این صورت باید منتظر آسیبهای همیشگی به شبکیهٔ چشم بود. فیلترهای نازکی که برای تماشای خورشید در بازار پیدا میشوند باید دقیقاً برای این کار ساخته شده باشند چون برخی فیلترهای ابتکاری پرتوی فرابنفش یا فروسرخ را از خود میگذراند که در صورتی که در آن هنگام درخشش خورشید زیاد باشد به چشم آسیب میرسد.[۱۲۱] دوربینهای دوچشمی بدون فیـلتـ*ـر میتواند پرتوی خورشید را ۵۰۰ برابر نیرومندتر از نگاه با چشم غیرمسلح، به چشم برساند با این کار میتوان گفت بیدرنگ سلولهای شبکیه کشته میشوند. حتی یک نگاه کوتاه با دوربین دوچشمی بدون فیـلتـ*ـر به خورشید میانهٔ روز میتواند باعث کوری همیشگی شود.[نیازمند منبع]
در خورشیدگرفتگیهایی که کلی نیستند هم نگاه به خورشید خطرناک است. چون در این وضعیت که ماه در برابر خورشید جای گرفته بیشتر نور خورشید گرفته شده و پیرامون فرد تاریک است به همین دلیل مردمک چشم بیشتر از همیشه باز شدهاست اما همزمان هنوز بخشی از خورشید در آسمان دیده میشود این بخش از خورشید همان شیدسپهر است که به درخشش دیگر جاهای خورشید است. در نتیجه مردمک چشم از ۲ تا ۶ میلیمتر باز شده که با نگاه به خورشید که به صورت جزئی نورانی است ناگهان نوری ده برابر همیشه وارد شبکیه میشود و سلولهای این بخش چشم ممکن است بمیرند در نتیجه نقطههای کوری همیشگی در محدودهٔ دید بیننده بوجود میآید.[۱۲۲] این گونه آسیبها به ویژه برای افراد بیتجربه و کودکان کمی پنهان است و فرد بیدرنگ پس از نگاه کردن متوجه آن نمیشود.
در هنگام طلوع و غروب خورشید به دلیل اثر پراکندگی رایلی و پراکندگی می در بخش زیادی از هواکرهٔ زمین نور خورشید ضعیف تر دیده میشود[۱۲۳] و حتی گاهی درخشش آن قدر کم است که میتوان به آسانی با چشم غیرمسلح یا ابزارهای نوری خورشید را تماشا کرد (به شرطی که مطمئن باشیم در شرایطی نیستیم که ناگهان درخشش خورشید زیاد شود و از پشت ابر بیرون آید) وجود گرد و غبار در هوا، رطوبت بالا و مه باعث میشود تا درخشش خورشید کمتر دیده شود.[۱۲۴]
پرتوی سبز، پدیدهای است کمیاب که اندکی پس از غروب و اندکی پیش از طلوع آفتاب روی میدهد. این درخشش توسط نور خورشید که در زیر افق شکسته میشود و به سوی بیننده تابیده میشود پدید میآید (معمولاً در اثر وارونگی هوا). نور با طول موج کوتاه تر (بنفش، آبی و سبز) بیش از پرتوهای با طول موج بلندتر (زرد، نارنجی و قرمز) خمیده میشود. اما بنفش و آبی بیشتر دچار پراکنندگی میشود در نتیجه نوری که دیده میشود سبز رنگ است.[۱۲۵]
پرتوهای فرابنفش خورشید دارای ویژگی گندزدایی است و در پاکسازی آب کاربرد دارد. همچنین از دیدگاه پزشکی هم بر ب*دن اثر دارد، هم باعث تولید ویتامین د میشود و هم میتواند آفتابسوختگی ایجاد کند. بخش بزرگی از پرتوهای فرابنفش توسط لایهٔ اوزون ضعیف میشود. به همین دلیل میزان فرابنفش دریافتی بسته به عرض جغرافیایی متفاوت است. این تفاوت باعث پدید آمدن گوناگونیهای زیستی در عرضهای جغرافیایی مختلف شدهاست برای نمونه میتوان به تفاوت در رنگ پو*ست انسان در سراسر کرهٔ زمین اشاره کرد.[۱۲۶]
صدای خورشید
در سپتامبر ۲۰۱۴ (شهریور ۱۳۹۳) آژانس فضایی آمریکا (ناسا)ˈ اعلام کرد توانستهاست صدای میدان الکترومغناطیسی خورشید را ضبط کند. یافتههای ماهواره Wind امکان تبدیل امواج الکترومغناطیس خورشید به فرکانس صوت و دریافت فایل صوتی خورشید را فراهم کرد. ماهواره Wind که حول مدار خورشید در حال گردش است، نوسانات الکترومغناطیسی خورشید را ضبط کرده و تبدیل به فایلهای صوتی کردهاست. ناسا در فرایند صوتیسازی (Sonification) دادههای دریافتی از خورشید را به صوت تبدیل کرد. در واقع این همان صدایی است که هنگام عبور فضاپیماها در فضا نیز شنیده میشود. این گروه موفق شدهاست دادههای صوتی دریافتی چند ساعته از خورشید را به یک کلیپ صوتی چند ثانیهای تبدیل کند.[۱۲۷]
ویژگی فیزیکی
مجموعهای از گفتاوردهای مربوط به خورشید در ویکیگفتاورد موجود است.
قطر خورشید درحدود ۱٬۳۹۲٬۰۰۰ کیلومتر یا ۱۰۹ برابر قطر زمین است.
جرم خورشید ۳۳۳٬۰۰۰ برابر جرم زمین است (جرم زمین۶×۱۰۲۷) و مقدار جرمی که خورشید از دست میدهد درحدود ۴/۲ میلیون تن در ثانیهاست.
وزن مخصوص خورشید ۴۱/۱ گرم بر سانتیمتر مکعب است.
حجم خورشید۱٫۴×۱۰۳۳ سانتیمتر مکعب که حدوداً معدل ۱٬۴۰۰٬۰۰۰ برابر حجم زمین است.
دمای مرکز خورشید ۱۵٬۰۰۰٬۰۰۰درجه کلوین است.
مدت چرخش وضعی: ۲۵ روز در استوا که درحوالی قطبها به ۳۴ روز میرسد.
یک سال کهکشانی زمانی است که خورشید یک بار به دور کهکشان میچرخد و در حدود ۲۲۵ میلیون سال است.
قطر زاویهای خورشید درآسمان ۳۲ دقیقهاست. قدر ظاهری خورشید ۲۶٫۷۴- است.
خورشید در زمان پیدایش زمین (زمانی که زمین کاملاً به اعتدال رسیده بود و آب در زمین وجود داشت) ۵ برابر امروز قطر و بزرگی داشت.
در حدود ۹۹٪ وزن خورشید را گازهای هیدروژن(H2) و هلیوم (He) تشکیل دادهاند، که از این مقدار نیز حدود ۷۰٪ هیدروژن۲۹٪ هلیوم و یک درصد مابقی، شامل سایر گازها میشود. در خورشید هر ثانیه ۵۰۰ میلیون تن هیدروژن طی فرایند همجوشی هستهای به هلیوم تبدیل میشود که فقط حدود ۵٪ آن به شکل انرژِی از خورشید خارج میگردد. ازآن جایی که هم جوشی یک عمل گرمادهاست همجوشیهای بیشمار خورشید و انرژی گرمایی حاصل از آن به عنوان اشعههای خورشید در منظومهٔ شمسی پخش میشود که مقداری از آن به زمین میرسد این عمل نیز باعث طوفانهای د*اغ و تحـریـ*ک ابرهای اسید سولفوریک در زهره میگردد. انجمن رمان نویسی
نامگذاریهای دیگر
آلفا گاو,تاشتر(در زبان پارسی باستان) ,tascheter , Parilicium, Cor Tauri, Paliliya, 87 Tauri, Gl 171.1A/B, GJ 9159 A/B, HR 1457, BD +16°629 A/B, HD 29139, GCTP 1014.00, LTT 11462, SAO 94027, FK5 168, GC 5605, ADS 3321 A/B, CCDM 04359+1631, Wo 9159 A/B, HIP 21421. منابع
سیمباد اطلاعات دَبَران (آلفا گاو، Alpha Tauri) یا پسرونده[۱] درخشانترین ستارهٔ صورت فلکی گاو است.
دبران یا تاشتر(در زبان پارسی باستان) در اصل یک غول سرخ است و در قدیم به عنوان چشم سرخ گاو خشمگین این صورت فلکی پنداشته میشد. ستاره سَدویس که در اوستا از آن نام بـرده شده را با دبران یکی دانستهاند.
اندازه ستاره دبران در مقایسه با خورشید
دبران یا تاشتر یکی از چهار ستاره سلطنتی پارسیان باستان بودهاست. عربها این ستاره را به نام خورشید میپرستیدند. نام دبران نیز از اصل عربی و به معنای "دنبالهرو" است زیرا این ستاره به دنبال خوشه پروین میگردد. [نیازمند منبع] دبران همچون ستارههای خوشه پروین در حال دور شدن از ماست و البته با سرعت بیشتری نسبت به تمام ستارههای قدر یکم آسمان از ما فرار میکند. دبران آنقدر سریع است که در مقایسه با سرعت دور شدن ستارههای خوشه پروین نیز، فقط سه ستاره از ۳۰۰ ستاره این خوشه نسبت به دبران از ما سریع تر دور میشوند.منزل چهارم ماه را نیز دبران میگویند. دو میلیون سال دیگر سفینه فضایی پایونیر ۱۰ به ستاره دبران خواهد رسید.تاشتر
اطلاعات رصدی
مبدا مبدأ (ستارهشناسی) اعتدال مبدأ (ستارهشناسی)
صورت فلکی گیسو بعد ۱۳h ۰۹m ۵۹.۲۷۶۶s میل ۴۵.۹۵۳″ ۳۱′ +۱۷° قدر ظاهری (V) ۴.۲۹ to ۴.۳۵
(combined) مشخصات
رده A: F5V / B: F5V
(binary star) راهنمای رنگ U-B −0.06 راهنمای رنگ B-V 0.45 راهنمای رنگ V-R 0.2 راهنمای رنگ R-I 0.2 اخترسنجی
سرعت شعاعی (Rv) −۱۷.۷ ± ۰.۹ km/s حرکت مخصوص (μ) RA: −۴۴۵.۹۶ mas/yr
Dec.: ۱۲۹.۶۹ mas/yr اختلاف منظر (π) ۵۱.۷ mas قدر مطلق (MV) ۳ (combined)
آلفا گیسوی برنیکه یک ستاره است که در صورت فلکی گیسوی برنیکه قرار دارد. انجمن رمان نویسی
زتا اژدها
اطلاعات رصدی
مبدا J2000 اعتدال J2000
صورت فلکی اژدها (صورت فلکی) بعد ۱۷h ۰۸m ۴۷.۱۹۵۶s میل ۵۲.۸۶۰″ ۴۲′ +۶۵° قدر ظاهری (V) +۳.۱۷۴ مشخصات
رده B6III راهنمای رنگ U-B –0.43 راهنمای رنگ B-V –0.11 اخترسنجی
سرعت شعاعی (Rv) –۱۷ km/s حرکت مخصوص (μ) RA: −۲۰.۷۶ mas/yr
Dec.: ۱۹.۱۵ mas/yr اختلاف منظر (π) ۹.۶۰ mas
جزئیات
دما ۱۳,۳۹۷ K
نامگذاریهای دیگر
22 Draconis, HR 6396, HD 155763, BD+65 1170, SAO 17365, FK5 639, HIP 83895. زتا اژدها یک ستاره است که در صورت فلکی اژدها قرار دارد. انجمن رمان نویسی